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Robust Proton Therapy

• Proton therapy vulnerable to errors during treatment planning
• Robust optimization used to develop plan that performs well in

multiple error scenarios
• Robust proton treatment planning:

1 Identify potential errors/uncertainties
2 Simulate dose distribution in each scenario
3 Optimize plan so clinical objectives met, taking into account all

possible scenarios
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Motivation

• To achieve clinically optimal plan, must consider many error
scenarios

• But robust optimization problem grows more complex as the
number of scenarios increases

• Need an optimization method that is fast, scalable, and
efficient in navigating the search space of feasible plans
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Distributed Optimization

• Multiple agents collaborate to solve an optimization problem
• Typically, each agent handles part of problem, then results

combined to produce solution
• Fast, memory efficient, scales well with size of data
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Alternating Direction Method of Multipliers (ADMM)

• Distributed optimization method dating back to 1970’s
• Used in many fields: ML, data science, imaging, robotics,

engineering, biology, finance...

• Key point: ADMM splits the problem into simpler
subproblems, which can be distributed and solved in parallel on
multiple processors (e.g., CPUs)
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Objective Value vs. Algorithm Runtime
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Dose-Volume Histogram (DVH) Bands
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Algorithm Runtime vs. Number of Scenarios
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Conclusion

• Robust optimization used in clinic, but suffers from slow speed
and high computational overhead

• ADMM splits optimization problem so workload can be
distributed efficiently across multiple CPU cores/threads

• Results in shorter planning time and improved plan quality
• Future work: implement ADMM in the cloud
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