Automated proton treatment planning with robust optimization using constrained hierarchical optimization

Vicki Trier Taasti

Linda Hong, Joseph O. Deasy, Masoud Zarepisheh
Robust optimization

- Intentionally impose errors
- Stochastic and the worst-case approach

Worst-case:

\[
\min_x \left(\max_s (f_s(x)) \right)
\]

With \(x \) the proton spot weights, and \(s \) the scenario index

Stochastic:

\[
\min_x \left(\mathbb{E}(f_s(x)) \right) = \min_x \left(\sum_s w_s \cdot f_s(x) \right)
\]

with \(\mathbb{E} \) the expectation value, and \(w_s \) an importance weight (or probability) for scenario \(s \)
Robust optimization

Stochastic:
• Includes all scenarios
• Focuses on the average scenario

Worst-case:
• Includes only one scenario
• Focuses on worst scenario
Robust optimization – our approach

Robust optimization:
- Includes the worst-case scenario
- Focuses on the worst outcome

Stochastic:
- Includes all scenarios
- Focuses on the average scenario

Worst-case:
- Includes only one scenario
- Focuses on worst scenario

Robust optimization:
\[
\min_x \left(\sum_{s \in S} (f(d(x, s)))^p \right)^{\frac{1}{p}}
\]
ECHO (Expedited Constrained Hierarchical Optimization)

- Constrained optimization
 - Max and mean doses are strictly fulfilled
 - Tuning of objective weights (b_w) is avoided

- Hierarchical optimization
 1. Target coverage
 2. OAR sparing

Robustness is included in both steps
Patients

Scenarios:
1 nominal
6 x 3 mm setup error + 3.5% range error
6 x 3 mm setup error + -3.5% range error

Beam directions
Robust vs non-robust

Nominal scenario better for the non-robust optimization

Non-robust vs robust: Patient 2, CTV

Robust

Non-robust

Less spread over the scenarios for the robust optimization

Non-robust vs robust: Patient 2, Parotid L

Vicki Trier Taasti
vicki.taasti@maastro.nl
Robust vs non-robust

Non-robust vs robust: Water phantom, CTV

Non-robust vs robust: Water phantom, OAR
p-norm (and stochastic) vs worst-case

Stochastic: p = 1

CTV: Worst-case vs p-norm \((p = 1)\)

CTV: Worst-case vs p-norm \((p = 2)\)

CTV: Worst-case vs p-norm \((p = 10)\)

Parotid R: Worst-case vs p-norm \((p = 1)\)

Parotid R: Worst-case vs p-norm \((p = 2)\)

Parotid R: Worst-case vs p-norm \((p = 10)\)
p-norm (and stochastic) vs worst-case

Patient 1

Patient 2

Patient 3

Phantom

Obj. func. = square sum of deviations (area marked in red)

Vicki Trier Taasti
vicki.taasti@maastro.nl
p-norm (and stochastic) vs worst-case

Prescription dose = 70 Gy

Worst-case approach:
- Less variation among the scenarios
- Better in the worst scenario
- Worse median value

p-norm approach:
- Full flexibility to focus on the most important criteria
Summary

♦ ECHO – automated treatment planning for protons
♦ Robustness approach in-between extreme approaches
♦ Flexibility to balance between the nominal and the worst scenario

Thank you very much for your attention
References

Vicki Trier Taasti
vicki.taasti@maastro.nl